

NUCLEUS Program "Danube Delta" 2022 - 2030

Dr. Gabriel LUPUNUCLEUS Program Director

THE HISTORY OF THE INSTITUTION

1926

Establishment of the Tulcea Hydrobiological Station, which will become part of the institute in 1970.

1970

Establishment of the Research and Design Institute for the Danube Delta (according to the DCM of the Socialist Republic of Romania no. 528 / 1970)

1999

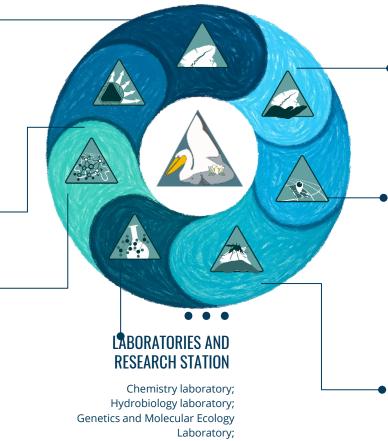
• • •

The year in which DDIRD became the National Institute for Research and Development (according to GD no. 409/1999)

BIODIVERSITY CONSERVATION AND SUSTAINABLE USE OF NATURAL RESOURCES

Plants, plant resources and habitats; Ichthyofauna and fishery resources; Ornithology and hunting; Reptiles and amphibians; Entomology; Human communities and ecotourism.

DANUBE DELTA -TECHNOLOGICAL INFORMATION CENTER


Socio-Economic Sciences, Tourism; Information and Technology Transfer; Organization of scientific events; Graphics, Design.

TECHNOLOGICAL DEVELOPMENT, TRANSFER AND SPATIAL PLANNING

Spatial planning and technological development;
Topographic studies;
Environmental assessment;
Geotechnical studies.

RESEARCH ACTIVITIES

Departments and Laboratories

Enisala, Maliuc and Chilia Veche

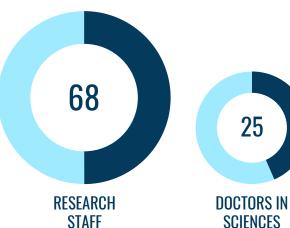
Research Stations.

ECOLOGICAL RESTORATION AND SPECIES RECOVERY

Sturgeon Research Group; Restoration of habitats.

INFORMATIONAL SYSTEM AND GEOMATICS

Geographical Informational Systems; Remote Sensing; Environmental Hydrological and Land Survey.


CENTER FOR THE STUDY OF TRANSBORDER AND EMERGENT DISEASES AND ZOONOSES

Ornithology, Game Resources, Zoonosys, Ecology, Mammalogy; Veterinary Medicine, Parasitology, Equine Ecology.

HUMAN RESOURCES TOTAL EMPLOYEES 136, OF WHICH:

SCIENTIFIC TITLES

PhD Candidate

RESEARCH **ASSISTANTS**

SCIENTIFIC RESEARCHERS

SCIENTIFIC RESEARCHERS

SCIENTIFIC RESEARCHERS

SCIENTIFIC RESEARCHERS

ENGINEER TECHNICAL DEVELOPMENT

ENGINEER ENGINEER TECHNICAL TECHNICAL DEVELOPMENT DEVELOPMENT

"Danube Delta 2022" NUCLEUS Program DD 2022

THE PERIOD OF IMPLEMENTATION 01.2019 – 12.2022

"Danube Delta 2022" NUCLEUS Program took into account the DDNI's own RDI Strategy for the period 2019-2022 and aimed to

stimulate and support research, development and innovation activities in the field of sustainable development, ecology and environmental protection, to substantiate management in the Danube Delta Biosphere Reserve and in other wetlands of national and international interest for biodiversity conservation and sustainable development.

Objectives of the "Danube Delta 2022" NUCLEUS Program

Objective 1

Conservation of biodiversity and ecosystems in the Danube Delta Biosphere Reserve

Objective 3

Sustainable development of human communities and risk factors in the Danube Delta Biosphere Reserve

Objective 2

Ecological restoration and recovery of species in the Danube Delta Biosphere Reserve

Objective 4

Information Management in Biodiversity Research, Ecological Restoration and Sustainable Development in the Danube Delta Biosphere Reserve

NUCLEUS Projects that are part of the "Danube Delta 2022" NUCLEUS Programme:

- NP 1 Development of methods to identify seasonal changes in aquatic fauna using eDNA as a biodiversity monitoring tool(BiomeDNA).
- NP 2 Assessment of the ecological status of aquatic ecosystems on the territory of the Danube Delta Biosphere Reserve.
- NP 3 Research on the status and conservation of biodiversity, habitats, sustainable exploitation of natural resources, impact of non-native species and socio-economic implications of the Danube Delta Biosphere Reserve.
- NP 4 Substantiation of the ecological reconstruction measures of the lakes in the Danube Delta based on the study of the dynamics of aquatic macrophyte habitats.
- NP 5 Research on the state of ecologically reconstructed areas, anthropically degraded areas and recovery of sturgeon species in the Danube Delta Biosphere Reserve.
- NP 6 Research on infectious diseases and parasitosis in wild and domestic animals in the Danube Delta Biosphere Reserve and surroundings.
- NP 7 Research on the traceability of pharmaceutical residues and chemical carcinogens in order to prevent risk factors on aquatic ecosystems and exploitable natural resources in the Danube Delta Biosphere Reserve.
- NP 8 Modelling and designing natural systemic solutions to limit the influences of risk factors in integrated and sustainable spatial planning in the Danube Delta.
- **NP 9** Development of biodiversity data processing methods to ensure information processing needs in wetland research.

Main Domain 6. - Environment and Eco-Technologies

Secondary Domain 6.1
Technologies for Environmental
Management, Monitoring, and
Remediation

Secondary Domain 6.2 Technologies for the Circular Economy

The "Danube Delta 2030" NUCLEUS Program is part of the DDNI's own RDI Strategy for the period 2022-2030 and aims to support the development plan of the Danube Delta Research and Development Institute, to substantiate the management in the Danube Delta Biosphere Reserve and to accumulate scientific information and expertise for the implementation of strategies.

Objectives of the "Danube Delta 2030" NUCLEUS Program"

Objective 1

Conservation of biodiversity and ecosystems in the Danube Delta Biosphere Reserve

Objective 3

Sustainable development of human communities and risk factors in the Danube Delta Biosphere Reserve

Objective 2

Ecological restoration and recovery of species in the Danube Delta Biosphere Reserve

Objective 4

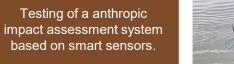
Information Management in Biodiversity Research, Ecological Restoration and Sustainable Development in the Danube Delta Biosphere Reserve

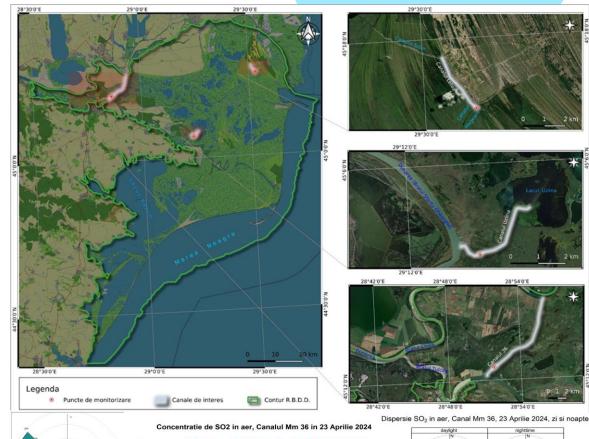
NP Projects - component of the NUCLEUS Program "Danube Delta 2030"

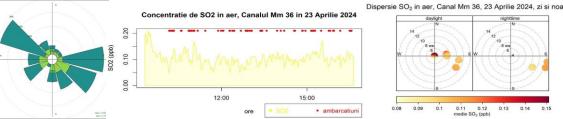
- NP 1 Assessment of the ecological status of the ecosystems in the Danube Delta Biosphere Reserve, in the context of climate change and the fulfillment of the 2030 decarbonization targets.
- NP 2 Molecular approaches from DNA barcoding to DNA metabarcoding for the study of aquatic species in the Danube Delta.
- NP 3 Research on the conservation of biodiversity, habitats, invasive (non-native) species, sustainable exploitation of natural resources and socio-economic implications of the Danube Delta Biosphere Reserve, in the context of climate change.
- NP 4 Research on the contribution of ecological restoration activities in the management of environmental risks caused by global climate change in the Danube Delta Biosphere Reserve.
- NP 5 Research on the development and implementation of suitable breeding technologies for endangered and declining fish species in the Danube Delta Biosphere Reserve.
- NP 6 Vector-borne diseases and epidemiological aspects in wild animal populations in delta ecosystems.
- NP 7 Research on new classes of chemical contaminants resulting from the development of new generations of goods and products.
- NP 8 Research on the natural, tourist, cultural and spiritual heritage of the Danube Delta Biosphere Reserve, in the context of sustainable development and global changes. Problems, challenges, perspectives.
- NP 9 Research on the evaluation and analysis of the rate of clogging of the channels subjected to engineering interventions to improve the hydrological conditions on the territory of the Danube Delta Biosphere Reserve.
- NP 10 Research on the digitalization of the monitoring process of the specific elements of the Danube Delta Biosphere Reserve.

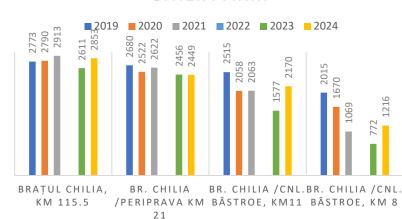
NP₁

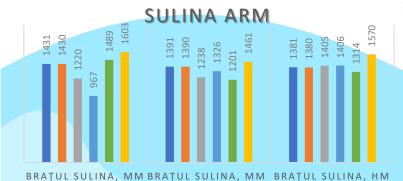
Assessment of the ecological status of the ecosystems in the Danube Delta Biosphere Reserve, in the context of climate change and the fulfillment of the 2030 decarbonization targets.


Implementation: 4 phases/year

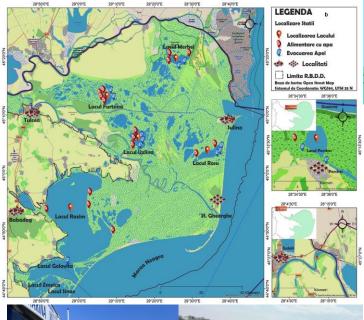

Physico-chemical parameters measured in water;


Parameters measured in air.





CHILIA ARM



Measured Liquid Flow (m3/s) - March 2019, 2020, 2021, 2022, 2023 și 2024

20

33.4

Statii Amonte Galati vărsare Siret Galati Aval Reni Ceatal Chilia-Dunăre fluviu Br. Tulcea M 42.5 (zona Pătlăgeanca – aval de santier) Stație Faleza Tulcea(in

sept. 2024
martie 2024
iulie 2024
sept. 2024
martie 2024
sept. 2024
iulie 2024
sept. 2024
iulie 2024
sept. 2024

Perioada

prelevare

iulie 2024

sept. 2024

martie 2024

iulie 2024

sept. 2024

martie 2024

iulie 2024

sept. 2024

iulie 2024

martie 2024

N-NH₄

0.235

0.141

0.173

0.443

0.143

0.168

0.133

0.049

0.140

0.060

0.151

0.118

0.086

0.186

0.171

0.151

0.052

0.151

0.159

0.104

0.154

0.054

0.231

0.051

0.126

0.057

0.121

0.067

0.247

0.102

0.232

0.079

mg N/L

N-NO₂

mg N/L

0.012

0.010

0.014

0.029

0.011

0.020

0.012

0.009

0.013

0.009

0.013

0.013

0.010

0.013

0.015

0.009

0.016

0.015

0.009

0.016

0.007

0.030

iulie 2024 sept. 2024 Martie 2024 Iulie 2024 Sept. 2024 Martie 2024

Martie 2024

Iulie 2024

Sept. 2024

Iulie 2024

Iulie 2024

Sept. 2024

Martie 2024

Sept. 2024

Martie 2024

Martie 2024

Martie 2024

0.022 0.015 0.087 0.014 0.009

0.013

0.017

0.014

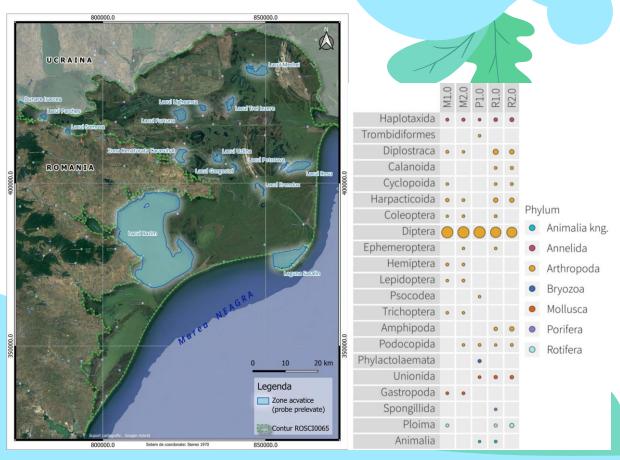
Molecular approaches - from DNA barcoding to DNA metabarcoding - for the study of aquatic species in the Danube Delta Implementation:

2 phases/year

Molecular approaches - from DNA barcoding to DNA metabarcoding - for the study of aquatic species in the Danube Delta Biosphere Reserve.

The project aims to conduct a complex study on the methods of assessing the ecological status of aquatic ecosystems in the Danube Delta. It aims to develop and evaluate new methods for identifying species of interest in the study area (DDBR), which complement or replace traditional methods.

The objectives of the project are:


- Systematization of existing data from the literature in order to update information on the tools used in biomonitoring.
- Development of a suitable methodology for species identification by interspersing traditional methods with molecular ones (DNA barcoding).
- Testing and evaluating work protocols for each stage of the analysis process, in order to develop a reliable and replicable eDNA analysis method (DNA metabarcoding) and consolidate the information bases for species by supplementing them with bioinformatics data, so that molecular approaches become an integral part of the biomonitoring process.
- Use/improvement of research infrastructure to provide integrated packages of services applicable in species management.

Representative images of the methods used for eDNA sampling

The stage of implementation:

- Screening of the literature on molecular methods used in the study of aquatic species
- Elaboration of the study methodology and the working plan
- Testing and validation of working protocols for the study of species starting from samples from controlled aquatic systems
- Analysis of ecological data and description of study areas
- Identification of aquatic species in the study areas by DNA barcoding method
- Quantification of aquatic fauna in the study areas using the eDNA method
- Critical analysis of molecular methods for the study of aquatic species in the DDBR
- Data analysis, presentation of the final project results and their dissemination

Geographic distribution of aquatic areas included in the study

Taxonomic assignment of sequences obtained by NGS analysis of samples

Research on the conservation of biodiversity, habitats, invasive (non-native) species, sustainable exploitation of natural resources and socio-economic implications in the Danube Delta Biosphere Reserve, in the context of climate change.

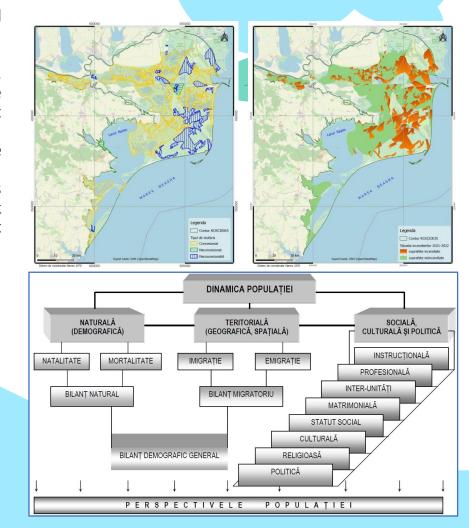
Implementation: 4 phases/year

General objective:

Conservation of biodiversity and habitats, management of invasive (non-native) species, sustainable exploitation of natural resources, and socio-economic implications in the Danube Delta Biosphere Reserve, in the context of climate change.

Specific objectives:

- Reed beds
- Vegetal resources
- Invertebrate
- Ihtiofauna
- Fishing Resources
- Mammals
- Invasive Species
- Socio-Economic Systems
- Ecological Tourism

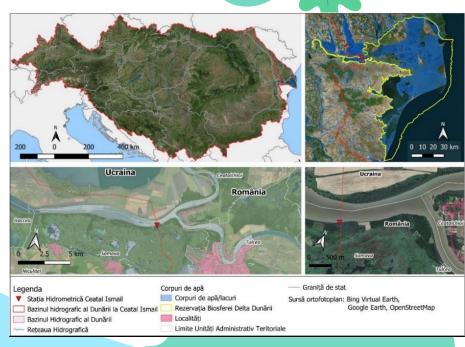

- fire ecology
- servicii ecosistemice
- MP substantiation DDBR
- MP substantiation DDBR
- fishing quota development
- MP substantiation DDBR
- risk management

Targets and performance indicators - data analysis and presentation of results for the year: 2024

- Report on the status and conservation of biodiversity, habitats, invasive (non-native) species, sustainable exploitation of natural resources and socio-economic implications in the DDBR;
- Contributions to the development of the report on the state of the environment for 2024, submitted to the DDBRA;
- Development of data sets that will be the subject of results dissemination – publication of scientific articles, book chapters or books, participation in dedicated scientific events.

Research on the contribution of ecological restoration activities in managing environmental risks caused by global climate change in the Danube Delta Biosphere Reserve.

Implementation: 2 phases/year

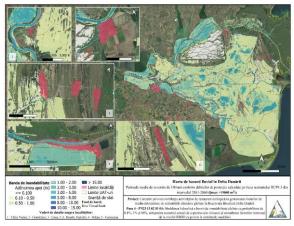

Hydrological modelling of flows with a return probability of 0.1%, 1% and 10% for the current scenario and for future time horizons taking into account climate change

The impact of climate change on the regime of maximums with different return periods was assessed through several stages:

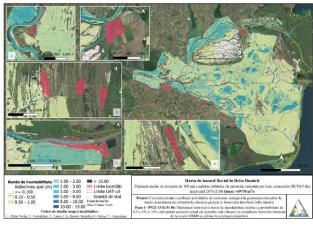
- the Danube River sector was selected the river segment with the highest flows;
- a database consisting of over 32 distinct sets (simulations with 4 climate models and 8 hydrological models) was established, analysed for the reference period (1971-2005) and for two climate scenarios RCP 4.5 and RCP 8.5;
- analysis of two distinct time horizons (2031-2060 and 2071-2100);
- the analysis methods used to determine the return periods of flows in various insurances, used in the calculation of extreme values for certain probabilities in hydrological practice, were selected.

The impact of climate change on maximum flows with certain return periods:

- The RCP 4.5 scenario indicates increases of about 17% for the 10-year return period, over 25% for flows with a 100-year return period and about 35% for flows that occur once every 1000 years, if we consider an average of the two distributions for the period 2031-2060. The projections for the period 2071-2100 indicate more pronounced increases for the three values of interest, with about 20% for flows with a 10-year return period, 31% for those with a 100-year return period and 60% for flows with a 1000-year insurance;
- The RCP 8.5 scenario indicates for the medium future (2031-2060) increases of 20%, 40% and up to 70% for the T10, T100 and T1000 periods, while for the 2071-2100 projection increases of 35%, 41% and 43% are expected for the T10, T100 and T1000 return periods. An extremely large increase in 1000-year flows is observed for the 2031-2060 interval of the RCP 8.5 projection..



Location of the study section at different scales of analysis



Hydraulic modelling of the floodplain and consultation with stakeholders at the DDBR level on the modelling results

- According to the analysis of floodplains for the 100-year return period, it is estimated that:
 - Increases in areas covered by water from 2100 km² in the reference period to approximately 2540 km² (RCP 4.5 2031-2060), and in the maximum impact period for the same scenario an increase to 2788 km² is observed.
 - O For the RCP 8.5 scenario, a more pronounced flooding trend is estimated, starting from an area of 2730 km² (2031-2060) to an area of 2788 km² (2071-2100).
- Given that current return periods are already characterized by a significant expansion of floodplains, the impact of climate change on floodability in the Danube Delta will be significant, especially for return periods of 100 and 1000 years.
- Floods that are currently considered to have a low probability of occurrence, such as those with a 100-year return period, could become events with a much higher frequency, even less than 10 years, under both climate scenarios analysed (RCP4.5 and RCP8.5). As a result, very large floods could occur almost annually.
- In the case of floods that currently have a return period of 1000 years, their frequency could be reduced to less than once every 50 years (compared to the current situation), which indicates a significant increase in flood risk in the Danube Delta.

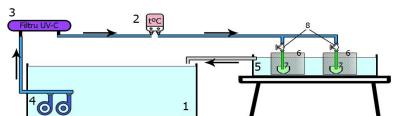
River hazard map in the Danube Delta for the 100-year return period determined using the RCP 4.5 scenario for the period 2031-2060

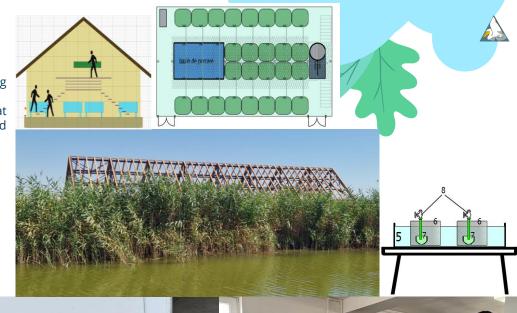
River hazard map in the Danube Delta for the 100-year return period determined using the RCP 4.5 scenario for the period 2071-2100

River hazard map in the Danube Delta for the 100-year return period determined using the RCP 8.5 scenario for the period 2031-2060

River hazard map in the Danube Delta for the 100-year return period determined using the RCP 4.5 scenario for the period 2031-2060

Research on the development and implementation of suitable reproductive technologies for endangered and declining fish species in the Danube Delta Biosphere Reserve.


Implementation: 4 phases/year



Targets and performance indicators - for 2024:

- Design, construction and commissioning of pilot breeding infrastructures;
- Adjusting and calibrating the functional parameters of the pilot plant that will be used in future actions to support and revitalize endangered and declining species in the Danube Delta Biosphere Reserve;

MINISTERUL CERCETĂRII, INOVĂRII ȘI DIGITALIZĂRII INSTITUTUL NAȚIONAL DE CERCETARE-DEZVOLTARE ...DELTA DUNĂRII"- TULCEA

Tulcea - Str. Babadas: 165 Cod 820112 tel. (+4 0240) 531520 fax (+4 0240) 533547 e-mail office@ddni.ro web http://www.ddni.ro

Denumirea proiectului:

Cercetări privind dezvoltarea și implementarea unor tehnologii de reproducere pretabile pentru speciile de pești periclitate sau în declin din Rezervația Biosferei Delta Dunării

> Program Nucleu, Delta Dunării 2030", cod PN PN 23 13 Contract 35N/2023 Proiect PN 23 13 0202 Faza 23 13 02 02 08

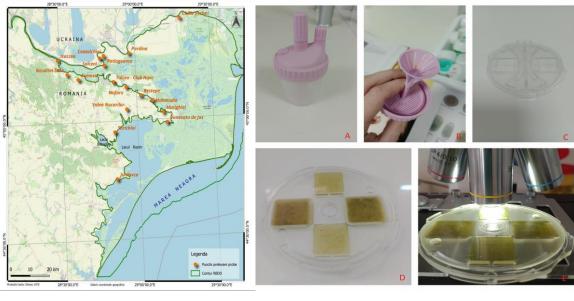
> > Tulcea Noiembrie, 2024

Targets and performance indicators - for 2024:

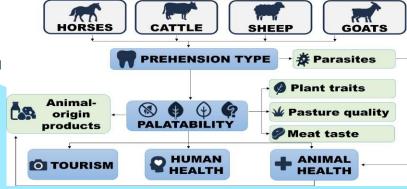
- Production and release of the first biological material produced for 2 endangered fish species with conservation value from the Danube Delta Biosphere Reserve
- Analysis of natural reproduction of Danube sturgeons
- ✓ Report on the analysis of the natural reproduction of Danube sturgeons - a support tool in identifying conservation solutions for critically endangered species

Vector-borne diseases and epidemiological aspects in wild animal populations in deltaic ecosystems.

Implementation: 3 phases/year


The project aims to assess the parasite load in certain regions in the vicinity of localities and assess the impact on animal and human populations in the context of ecological interactions specific to the Danube Delta. One of the main objectives is to study diseases that are not included in the national strategic program for control and prevention.

The purpose of the project - is to create norms and measures for the control and prevention of communicable diseases on pastures in the vicinity of localities in the Danube Delta and its surroundings. The description of the interactions of ecological factors in the deltaic biocenoses, as well as the impact on the animal and human population, represent data-instrument in epidemiological modeling.



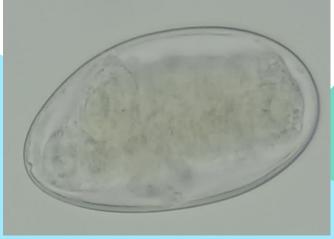
Laboratory determinations (Flotac method)

The relationship between prehension type, palatability and impact on human, animal health and tourism

Overall objective of the project:

Database that can be used in epidemiological modelling through specialized programs in order to manage possible pandemics or epidemics on the territory of the Republic of Moldova and its surroundings.

Biological sample collection

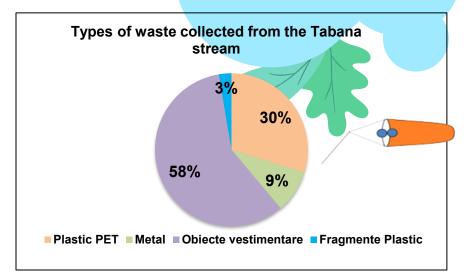


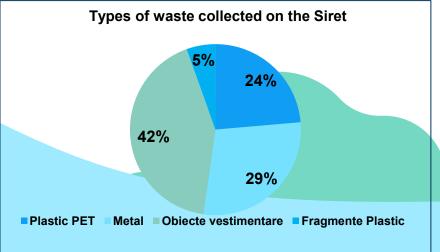
Dermacentor reticulatus

Strongyloid egg

Research on new classes of chemical contaminants resulting from the development of new generations of goods and products.

Implementation: 2 phases/year

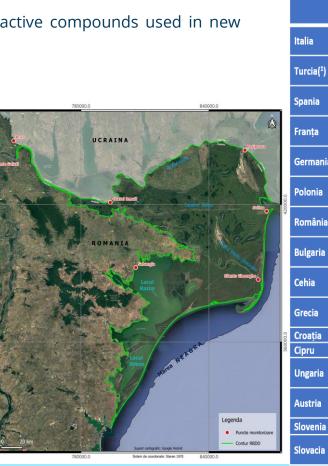


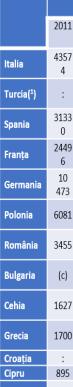

Targets and performance indicators - for 2024:

- Designing an innovative device suitable for lentic aquatic ecosystems to reduce plastic load;
- Device construction and testing in a pilot station identified to be affected by micro/macroplastic contamination;

Device suitable for lentic aquatic ecosystems to reduce plastic load

Targets and performance indicators - for 2024: Identification of highly toxic active compounds used in new generations of pesticides Tons of pesticides used at European level 2011-2022 Pesticide sales in the EU. 2011-2022 UCRAINA


Average quantities used per


hectare

3.5

2.5

kg/hectare

1544

797

Austria

Slovacia

Fungicide s

bactericide

Tara

Erbicide

si acaricide

159

75

cide

Regulatori

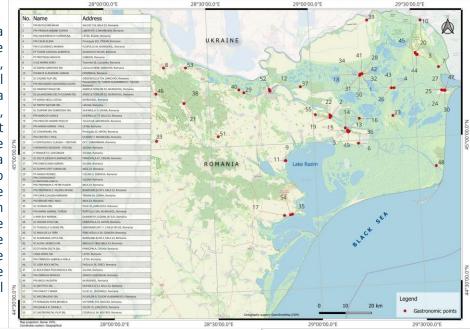
crestere a

plantelor

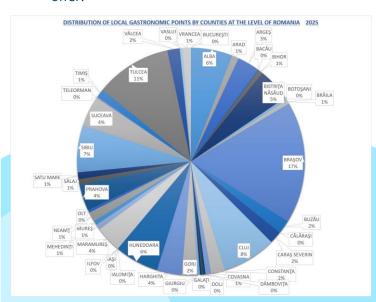
113

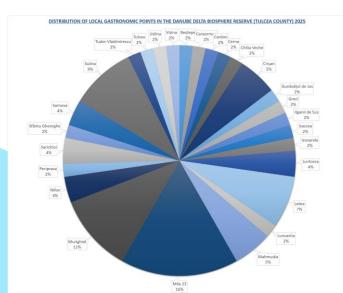
produse

Research on the natural, tourist, cultural and spiritual heritage of the Danube Delta Biosphere Reserve, in the context of sustainable development and global change. Problems, challenges, perspectives.


Implementation: 2 phases/year

General objective - through a multidisciplinary approach, the revitalization of the tourist, natural, cultural and spiritual heritage of the Danube Delta Biosphere Reserve is envisaged, an extremely important aspect considering that the Danube Delta is a Biosphere Reserve, a wetland where it is imperative to promote solutions that combine biodiversity conservation practices and methods with the development and sustainable exploitation of resources in the context of sustainable development and new global changes


Map of local gastronomic points in DDBR and nearby areas

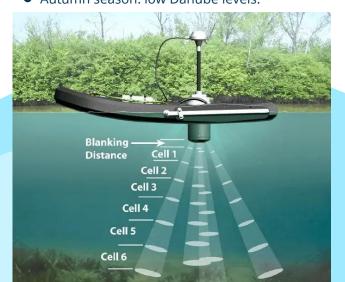


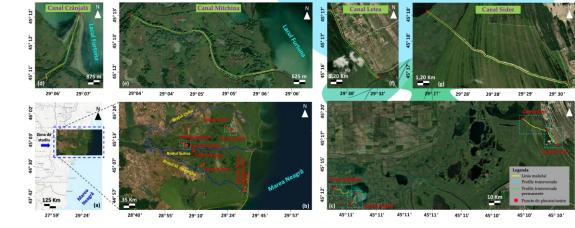
Results obtained - 2024:

 Research on the role of Local Gastronomic Points in the Danube Delta Biosphere Reserve in promoting cultural identity, preserving culinary traditions, supporting the local economy and strengthening a sustainable tourism model. Local Gastronomic Points are structures that contribute not only to the valorisation of culinary traditions specific to the area, but also to maintaining the balance between human activities and biodiversity conservation, by integrating the principles of sustainable development into the regional tourism offer.

Research on the evaluation and analysis of the clogging rate of channels subjected to engineering interventions to improve hydrological conditions on the territory of the Danube Delta Biosphere Reserve.

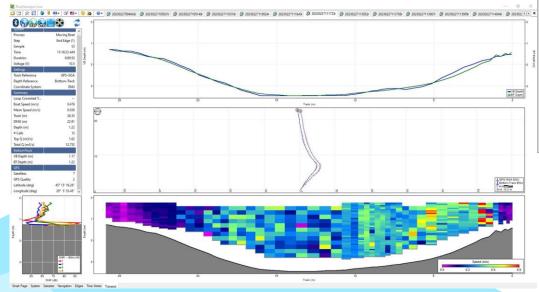
Implementation: 2 phases/year

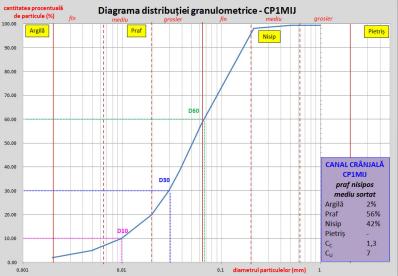




The main objective – assessment and analysis of the clogging rate of the channels subject to engineering interventions to improve hydrological conditions on the territory of the Danube Delta Biosphere Reserve in order to develop clogging scenarios. The scenarios illustrate the clogging rate of the analyzed channels through maps that will be produced in specialized programs.

Phase III: Analysis of the clogging rateSpring season: high Danube levels;


Phase IV: Analysis of the clogging rate • Autumn season: low Danube levels.



The targeted channels: Mitchina Channel, Crânjala Channel, Letea Channel, Sidor Channel, Uzlina Channel, Gorgova Channel and Cordon Litoral Channel

Section 1 created with the RIVER SURVEYOR ADCP profile trajectory, measured parameters (total flow, boat speed, average speed, measured distance, channel depth)

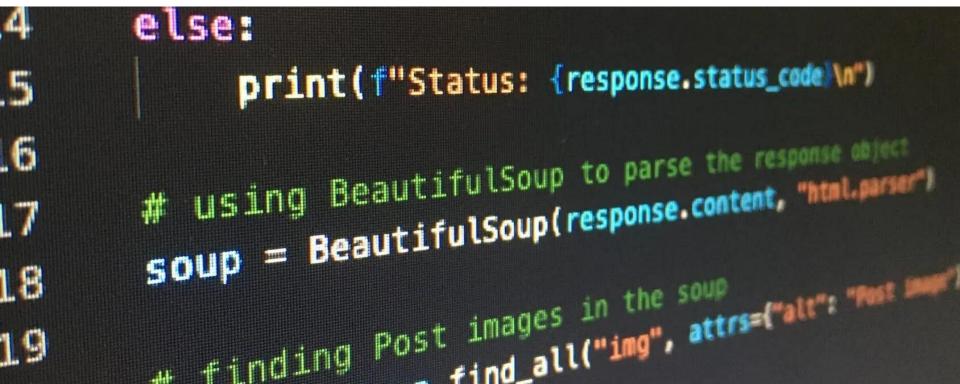
Complete results of the granulometric analyses for the studied Channels

Granulometric curve for the substrate sample from profile 1 (2024, Spring at high water)

Locație	Denumire Probă	Conținut argilă (%)	Conţinut praf (%)	Conţinut nisip (%)	Continut pietris (%)	Coeficient de curbură (C _C)	Coeficient de uniformitate (C _U)	Granulometrie
				NIVELU	RI RIDICATE	ALE APEI		
CANAL CRÂNJALĂ	CP1MIJ	2	56	42	-	1,3	7	praf nisipos mediu sortat
	CP2MIJ	2	46	52	2	1,1	8	praf nisipos mediu sortat
	CP3MIJ	2	62	36	2	1,4	6,7	praf nisipos mediu sortat
CANAL MITCHINA	MP1MIJ	4	82	14		1,5	6	praf mediu sortat
	MP2MIJ	2	46	52	-	1,1	7,8	praf nisipos mediu sortat
	МРЗМІЈ	3,5	82	14,5		1,5	6	praf mediu sortat
CANAL LETEA	LP1MIJ	2	25	73		1,7	6,6	nisip prăfos mediu sortat
	LP2MIJ	<1	14	85	~	1,9	5,5	nisip fin slab sortat
	LP3MIJ	<1	9	90	-	1	2,3	nisip fin uniform sortat
CANAL SIDOR	SP1MIJ	<0,5	<0.5	97	2,5	1	2,3	nisip fin-mediu uniform sorta
	SP2MIJ	±0	1,5	92,5	6	1	3,5	nisip mediu-fin slab sortat
	SP3MIJ	±0	2	92.5	5,5	1,3	3,3	nisip mediu-fin slab sortat
				NIVELU	RI SCĂZUTE	ALE APEI		
CANAL CRÂNJALĂ	CP1MIJ2	2	24	74		1,5	5,7	nisip prăfos slab sortat
	CP2MU2	2	45	53	-	0,9	8,8	praf nisipos mediu sortat
	СРЗМИ2	2	42	56		1,2	6,5	praf nisipos mediu sortat
CANAL MITCHINA	MP1MU2	2	49	49		1,3	6,8	praf nisipos mediu sortat
	MP2MU2	5	81	14	1 2	1,5	6	praf mediu sortat
	МРЗМИ2	4	82	14	2	1,5	6	praf mediu sortat
CANAL LETEA	LP1MU2	<1	12	87		1,1	2,8	nisip fin uniform sortat
	LP2MU2	2	17	81	-	1,6	4,9	nisip prăfos slab sortat
	LP3MU2	<0.5	5	95	2	1	2,1	nisip fin uniform sortat
CANAL SIDOR	SP1MU2	<1	6	93		1	2,3	nisip fin-mediu uniform sort
	SP2MU2	±0	1,5	96,5	2	0,9	3,1	nisip fin-mediu slab sortat
	CDOLLIIS			or		4.5		

Research on the digitalization of the monitoring process of specific elements in the Danube Delta Biosphere Reserve.

Implementation: 3 phases/year



The overall objective: Objective 4 - Information management in biodiversity research, ecological restoration and sustainable development in the Danube Delta Biosphere Reserve as established in the Core Program proposal.

The specific objectives:

- development of a mobile software application for entering data about habitat:
- development of a mobile software application for entering data about plant;
- development of a mobile software application for entering data about fish;
- development of a mobile software application for entering data about mammals;
- development of a mobile software application for entering data about insects.

Taking field information into digital format is part of information management in biodiversity research, in that the numerous data will be stored in a standardized digital format, easy to access and manage.

The partial result consists of creating a characteristic digital form with fields of interest for the habitat specialist who will go and collect data in the field. This electronic form is almost complete, it can very easily be developed in the near future to complete the application with all the required data.

The application can still be improved to reach the maximum level of design and functionality.

8 ISI / 11 BDI

Scientific papers

1 chapter

Books / book chapters

13

Scientific communications

18

Relevant studies at national/field level

1

PhD thesis

7 Databases

IT products

3

Plans

Z

Scheme

19 Datasets

Databases

ANNUAL AGENDA

Round Congress tables

Seminars

4 DELTA

Scientific

in 2017)

Symposium 4

DELTA (launched

Wetlands (

Deltas &

Scientific
Symposium

(launched in 1992)

Scientific Multimedia Telecommunications Exhibition presentations Conference

Scientific communication sessions (launched in 2012)

Thank you!

gabriel.lupu@ddni.ro +40 240 - 531 520 ddni.ro

